Carbon.
"Мы надеемся, что наша работа приблизила нас к разрешению загадки ультратвердого углерода. Разработанная модель поможет понять природу его уникальных свойств, помочь направленно синтезировать новые ультратвердые углеродные материалы, и, надеюсь, будет способствовать дальнейшему развитию этой перспективной области науки", — заявил Павел Сорокин из Института сверхтвердых и новых углеродных материалов (ТИСНУМ) в Троицке и ведущий научный сотрудник лаборатории в НИТУ "МИСиС".
За последние годы ученые открыли несколько новых форм углерода и других веществ и соединений, таких как нитрид бора, способных соперничать с алмазом в механической прочности и других качествах, которые раньше считались отличительной чертой этого минерала. В их число входят эльбор, карбин, фуллерит, нанополикристаллические алмазы и аморфный углерод, физическая подоплека многих свойств которых остается загадкой для ученых.
Ярким примером этого является фуллерит – материал, состоящий из фуллеренов, своеобразных нано-"мячиков" из нескольких десятков атомов углерода, "спрессованных" в единое целое. За последние годы ученые создали множество разновидностей фуллерита, обладающих самыми разными механическими и физическими свойствами. Одна из таких версий фуллерита, получившая имя "тиснумит", оказалась настолько твердой, что она может царапать алмаз.
Физики из России разгадали тайну жесткости поликристаллических алмазов
Это открытие стало большой загадкой для ученых – фуллерит не является монокристаллическим материалом, как алмаз, и он в принципе не должен был обладать такой твердостью. Пытаясь понять, почему это происходит, физики из МФТИ в Долгопрудном, МИСиС, ТИСНУМа, Сколтеха и Института биохимической физики РАН в Москве создали компьютерную модель фуллерита на базе данных экспериментов и попытались раскрыть его структуру.
Как рассказывает Александр Квашнин из МФТИ, ученые обратили внимание на то, что сжатие фуллеренов при высокой температуре приводит к образованию нано-алмазов. Фуллерит изготовляется похожим образом, что заставило российских физиков предположить, что между этими процессами есть нечто общее.
Квашнин, Сорокин и их коллеги пришли к мнению, что сжатие фуллерита приводит к тому, что часть его фуллеренов превращается в алмазоподобную материю, а часть – сохраняет свою структуру, но при этом находится в "спрессованном" состоянии. Как показали расчеты ученых, комбинация "алмазной оболочки" и сжатых фуллеренов, находящихся внутри нее, повышает механическую прочность всей структуры и делает ее более прочной, чем алмаз.
Физик: Россия еще может стать лидером в углеродных нанотехнологиях
Ученые надеются, что их компьютерная модель фуллерита и связанные с ней расчеты помогут создать еще более прочные версии этого материала и научиться изготовлять его в количествах, достаточных для его применения на практике и вытеснения алмазов с трона главного углеродного материала современной обрабатывающей промышленности.