DARPA выделила $65 млн на бесконечно обучающийся ИИ - «Новости Банков» » Новости Дня Сегодня
DARPA выделила $65 млн на бесконечно обучающийся ИИ - «Новости Банков» 16:00 Понедельник 0 519
27-11-2017, 16:00

DARPA выделила $65 млн на бесконечно обучающийся ИИ - «Новости Банков»


DARPA выделила $65 млн на бесконечно обучающийся ИИ - «Новости Банков»

Исследовательское оборонное агентство DARPA хочет изменить принцип работы искусственного интеллекта при помощи программы L2M или «бесконечного обучения», которая позволит машине безостановочно совершенствоваться, адаптироваться к новым задачам и понимать, что и когда изучать.
«Мы хотим добиться жесткости автомата с гибкостью человека», — заявила директор программы Хава Зигельман. DARPA выделила $65 млн и уже отобрала 16 групп на 4-годичный проект, но вакансии еще есть.
Эти 16 грантов DARPA распределила на две группы: команды, входящие в первую, будут 4 года разрабатывать систему, способную к беспрерывному обучению и адаптации к новым заданиям и обстоятельствам. Командам второй группы дадут те же 4 года на создание механизма бесконечного обучения — на основе биологии или физики — и на перенос этого механизма на алгоритм ИИ.
Большая проблема ИИ произрастает из структуры, которую он использует. Нейронные сети — адаптивная система, способность к обучению которой зависит от силы связей между искусственными нейронами. Сегодня эти сети обучаются на наборах данных — изображениях автомобилей или людей, например. После обучения сила связей сети фиксируется, и она выходит в мир выполнять работу, для которой была подготовлена.
Проблема возникает тогда, когда ИИ встречает нечто совершенно новое, что не научился распознавать. Без переобучения он будет повторять ту же ошибку снова и снова. Но сейчас ИИ нельзя по-настоящему переобучить — такие попытки приведут к феномену «катастрофического забывания», объяснила Зигельман на конференции IEEE Rebooting Computer Conference. Это ситуация, в которой получение новых знаний разрушает все уже накопленные.
У людей тоже снижается производительность, когда они сталкиваются с чем-то новым, но мы умеем быстро приспосабливаться, не теряя способности к действию. Если, например, перевесить баскетбольное кольцо на 30 см выше, игроки сначала станут промахиваться, но потом привыкнут и научатся играть по новым правилам. Не придется уводить их с поля и заново учить, как играть в баскетбол, пишет IEEE Spectrum.
Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

Исследовательское оборонное агентство DARPA хочет изменить принцип работы искусственного интеллекта при помощи программы L2M или «бесконечного обучения», которая позволит машине безостановочно совершенствоваться, адаптироваться к новым задачам и понимать, что и когда изучать. «Мы хотим добиться жесткости автомата с гибкостью человека», — заявила директор программы Хава Зигельман. DARPA выделила $65 млн и уже отобрала 16 групп на 4-годичный проект, но вакансии еще есть. Эти 16 грантов DARPA распределила на две группы: команды, входящие в первую, будут 4 года разрабатывать систему, способную к беспрерывному обучению и адаптации к новым заданиям и обстоятельствам. Командам второй группы дадут те же 4 года на создание механизма бесконечного обучения — на основе биологии или физики — и на перенос этого механизма на алгоритм ИИ. Большая проблема ИИ произрастает из структуры, которую он использует. Нейронные сети — адаптивная система, способность к обучению которой зависит от силы связей между искусственными нейронами. Сегодня эти сети обучаются на наборах данных — изображениях автомобилей или людей, например. После обучения сила связей сети фиксируется, и она выходит в мир выполнять работу, для которой была подготовлена. Проблема возникает тогда, когда ИИ встречает нечто совершенно новое, что не научился распознавать. Без переобучения он будет повторять ту же ошибку снова и снова. Но сейчас ИИ нельзя по-настоящему переобучить — такие попытки приведут к феномену «катастрофического забывания», объяснила Зигельман на конференции IEEE Rebooting Computer Conference. Это ситуация, в которой получение новых знаний разрушает все уже накопленные. У людей тоже снижается производительность, когда они сталкиваются с чем-то новым, но мы умеем быстро приспосабливаться, не теряя способности к действию. Если, например, перевесить баскетбольное кольцо на 30 см выше, игроки сначала станут промахиваться, но потом привыкнут и научатся играть по новым правилам. Не придется уводить их с поля и заново учить, как играть в баскетбол, пишет IEEE Spectrum.
Новости дня / ДНР и ЛНР / Спорт / Здоровье / Видео / Россия / Ростов-на-Дону / Технологии / Политика / Мероприятия / Фото репортаж 09:55 Воскресенье 0 23 648 Автодилеры попросили Минпромторг отложить повышение цен на иномарки Фото Andrew Akabane | Unsplash Ассоциация "Российские автодилеры" (РоАД) обратилась к министру торговли и промышленности Антону Алиханову с просьбой отложить намеченное на 1 октября

       
Top.Mail.Ru
Template not found: /templates/FIRENEWS/schetchiki.tpl